Home  >  Products  >  KCNN2 (potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2) Blocking Peptide (the middle region of protein) (100ug)
KCNN2 (potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2) Blocking Peptide (the middle region of protein) (100ug)

KCNN2 (potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2) Blocking Peptide (the middle region of protein) (100ug)


Supplier: Aviva Systems Biology Incorporated
Star_fadedStar_fadedStar_fadedStar_fadedStar_faded
0 reviews | Write a Review Pencil
This is a synthetic peptide designed for use in combination with anti-KCNN2 antibody (Catalogue #: ARP35439_P050) made by Aviva Systems Biology. It may block above mentioned antibody from binding to its target protein in western blot and/or immunohistochecmistry under proper experimental settings. There is no guarantee for its use in other applications. Please inquire for more details.
Presku: AAP35439
Size: 100 ug
Weight: 26kDa
Gene: 3781
Format: Lyophilized powder
Target: KCNN2 is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This protein is a member of the KCNN family of potassium channel genes. Two transcript variants encoding different isoforms have been found for KCNN2.Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. KCNN2 is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP.Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. The encoded protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This gene is a member of the KCNN family of potassium channel genes. Two transcript variants encoding different isoforms have been found for this gene.
Alternative names: KCa2.2; SK2; SKCA2; hSK2