Home  >  Products  >  DUT (dUTP pyrophosphatase) Blocking Peptide (100ug)
DUT (dUTP pyrophosphatase) Blocking Peptide (100ug)

DUT (dUTP pyrophosphatase) Blocking Peptide (100ug)


Supplier: Aviva Systems Biology Incorporated
Star_fadedStar_fadedStar_fadedStar_fadedStar_faded
0 reviews | Write a Review Pencil
This is a synthetic peptide designed for use in combination with anti-DUT antibody (Catalogue #: ARP46027_T100) made by Aviva Systems Biology. It may block above mentioned antibody from binding to its target protein in western blot and/or immunohistochecmistry under proper experimental settings. There is no guarantee for its use in other applications. Please inquire for more details.
Presku: AAP46027
Size: 100 ug
Weight: 19kDa
Gene: 1854
Format: Lyophilized powder
Target: DUT is an essential enzyme of nucleotide metabolism. This protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death.This gene encodes an essential enzyme of nucleotide metabolism. The encoded protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death. Alternative splicing of this gene leads to different isoforms that localize to either the mitochondrion or nucleus. A related pseudogene is located on chromosome 19.
Alternative names: FLJ20622; dUTPase