Home  >  Products  >  ATP2B4 (ATPase, Ca++ transporting, plasma membrane 4) Blocking Peptide (the middle region of protein) (100ug)
ATP2B4 (ATPase, Ca++ transporting, plasma membrane 4) Blocking Peptide (the middle region of protein) (100ug)

ATP2B4 (ATPase, Ca++ transporting, plasma membrane 4) Blocking Peptide (the middle region of protein) (100ug)


Supplier: Aviva Systems Biology Incorporated
Star_fadedStar_fadedStar_fadedStar_fadedStar_faded
0 reviews | Write a Review Pencil
This is a synthetic peptide designed for use in combination with anti-ATP2B4 antibody (Catalogue #: ARP44394_P050) made by Aviva Systems Biology. It may block above mentioned antibody from binding to its target protein in western blot and/or immunohistochecmistry under proper experimental settings. There is no guarantee for its use in other applications. Please inquire for more details.
Presku: AAP44394
Size: 100 ug
Weight: 129kDa
Gene: 493
Format: Lyophilized powder
Target: ATP2B4 belongs to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. These enzymes remove bivalent calcium ions from eukaryotic cells against very large concentration gradients and play a critical role in intracellular calcium homeostasis. The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these enzymes is further increased by alternative splicing of transcripts. The expression of different isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. ATP2B4 is the plasma membrane calcium ATPase isoform 4.The protein encoded by this gene belongs to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. These enzymes remove bivalent calcium ions from eukaryotic cells against very large concentration gradients and play a critical role in intracellular calcium homeostasis. The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these enzymes is further increased by alternative splicing of transcripts. The expression of different isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. This gene encodes the plasma membrane calcium ATPase isoform 4. Alternatively spliced transcript variants encoding different isoforms have been identified.
Alternative names: ATP2B2; DKFZp686G08106; DKFZp686M088; MXRA1; PMCA4; PMCA4b; PMCA4x